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system. Meanwhile, three corresponding algorithms are 
designed to verify the effectiveness and feasibility of the 
proposed decision methods. Finally, in order to verify the 
validity of methods, approximation accuracies of CE-MSD, 
DS-MSD and M-MSD are compared in multi-source deci-
sion systems which are generated by adding Gauss noise and 
random noise to Data set downloaded from UCI. In sum, 
the decision theory of multi-source decision systems is a 
generalization of the decision-theoretic rough set, which is 
worthy of further research.

Keywords  Decision-theoretic rough set · Multiple-source 
decision systems · Information fusion · Information system

1  Introduction

With the development of information technology, data size 
is increasing and the amount of data is also growing. One of 
the most urgent problems is how to use data from multiple 
sources to make decisions. Through the integration of data 
from different sources, we can make up for the deficiency 
of the single data to achieve the mutual complement and 
mutual confirmation of a variety of data sources. In this way, 
it not only expands the application range of the data, but also 
improves the accuracy of the analysis. Therefore, it is espe-
cially important that taking full advantage of multi-source 
information decision-making.

Decision-theoretic rough set (DTRS) theory first proposed 
by Professor Yao [28]. DTRS is a prominent probabilistic 
rough set model, in which thresholds can be calculated by 
the decision risk minimization based on Bayesian decision 
theory [33], conditional probabilities can be estimated by 
Naive Bayesian model [31]. And the positive region, nega-
tive region, boundary region of probabilistic rough sets can 

Abstract  Through the complementary integration of 
information from different sources, information fusion 
can improve the decision-making process in the increas-
ing uncertain environments. How to make full use of the 
information from various sources to make decisions is a 
key problem in multi-source decision-theoretic. The more 
accurate and comprehensive information is, the easier the 
decision will be. Thus the uncertainty of decision-making 
is an objective criterion for evaluating the fusion effect. 
Therefore, three kinds of multi-source decision methods are 
proposed based on considering the uncertainty of decision-
making process, which are the conditional entropy multi-
source decision (CE-MSD) method, the decision support 
degree multi-source decision (DS-MSD) method and the 
mean multi-source decision (M-MSD) method. The CE-
MSD method based on taking into account the uncertainty 
of each condition attribute for decisions aims to select the 
most reliable source for each attribute according to the con-
ditional entropy, and then make final decisions under a new 
restructuring decision table. The DS-MSD method proposed 
by considering the uncertainty of condition attribute set for 
decisions aims to make the final decision through the deci-
sion support degree of all the sources to each object. The 
M-MSD method and the approximate precision index are 
introduced as reference standards to measure the effective-
ness of CE-MSD and DS-MSD in the multi-source decision 
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be regarded as a application of three-way decisions theory 
[29, 30]. The DTRS model has solid theoretical foundation 
and practical value [6, 14, 16, 23, 27, 37]. There are a lot 
of relevant research. Based on DTRS, Li and Zhou studied 
multi-view decision rule extraction [38] and proposed a new 
decision model by considering different risk preferences of 
decision makers [18]. Liu et al. [11] discussed multiple-cat-
egory three-way decisions on the basis of decision-theoretic 
rough sets. Yang and Yao put forward a multi-agent decision-
theoretic rough set model [36]. Ma and Sun [21] system-
atically researched the decision-theoretic rough set model 
over double universes. Jia et al. [5] explored minimum cost 
attribute reduction in the decision-theoretic rough set model. 
Liang et al. [15] investigated triangular fuzzy decision-theo-
retic rough sets. Wei [26] proposed interval valued hesitant 
fuzzy uncertain linguistic aggregation operators in multiple 
attribute decision making. Qi et al. [24] proposed multiple 
attribute group decision making based on generalized power 
aggregation operators under interval-valued dual hesitant 
fuzzy linguistic environment. Ma et al. [20] proposed multi-
ple attribute reduction models based on DTRS. Yu et al. [32] 
presented an automatic method to determine the number of 
clusters by using decision-theoretic rough sets. Deng et al. [3] 
provided a method for automatically calculating thresholds 
alpha and beta by means of combining information entropy. 
Liu et al. [12] raised a new classification method on account 
of regression analysis and decision-theoretic rough sets. Qian 
et al. [20] explored decision-theoretic rough sets under multi-
granularity. In fact, there are many applications about DTRS, 
such as text classification [35], oil exploitation [17], policy 
decisions [13], web-based medical decision support systems 
[39], email filtering [40] and so on.

From the perspective of information sources, above 
researches are based on the single information source. In 
many circumstances, it is necessary that integrating all the 
information from diverse sources to make decisions. There 
are many studies on multi-source information fusion [25, 
41]. In particular, Khan and Banerjee [9, 10] studied rough 
sets and notions of approximations based on views of mem-
bership of objects in multiple-source approximation systems 
(MSAS). Besides, Md and Khan [19] proposed a modal logic 
for multiple-source tolerance approximation spaces (MTAS) 
in view of the principle of only considering the informa-
tion of sources about objects. Khaleghi et al. [8] studied 
a comprehensive review of the data fusion state of the art, 
exploring its conceptualizations, benefits, and challenging 
aspects, as well as existing methodologies. Yao et al. [34] 
studied advances in the field of Web information fusion and 
integration. Recently, Yao et al. [35] considered approaches 
to rough set approximations in a multigranulation space.

Then we will study decision-theoretic rough sets under 
multiple-source decision systems (MSDS) which have the 
same universe and attributes and different information 

functions (namely Isomorphic multiple-source decision 
systems). It should be pointed out that isomorphic multiple-
source information systems refer to the same cardinality of 
the partition generated by attribute set on the universe in 
each decision system. For heterogeneous multiple-source 
information systems, we can find the ultimate goal as a 
middle bridge to establish the relationship between different 
sources. However, on this basis will be required to achieve 
a higher goal for isomorphic multiple-source information 
systems. Because the more information you have on the 
same thing, learned knowledge should be more accurate. 
Therefore, the research of multiple-source decision systems 
(MSDS) which have the same universe and attributes and 
different information functions is meaningful. The most 
important issue which how to make full use of the informa-
tion provided by each source in multiple-source decision 
systems (MSDS). Two examples are introduced to highlight 
the motivation of multiple-source decisions.

1.	 A person suspected that she had lung cancer because 
she often cough and feels persistent chest pain. In order 
to diagnose, she went to three hospitals which have dif-
ferent precision instrument and equipment and profes-
sional medical level to do some related checks such as 
the imaging of chest X-ray and CT. If the final diagnosis 
of the three hospitals are the same, we can determine 
whether the person is suffering from lung cancer or not. 
When three hospital diagnosis results are not identical, 
how to determine the final diagnosis result needs to be 
further explored. For example, you can get three results 
of CT through the check from above hospitals. Which 
result of CT is more able to reflect the true state of her 
body and is more helpful to make the final diagnosis? 
These phenomena are thought-provoking.

2.	 The evaluation of scholarship need to consider many 
aspects annually, such as academic achievement, scien-
tific research and moral performance. And each aspect 
may need to consider two semesters. For example, each 
student need to be considered academic performance of 
two semesters before appraisal organization makes the 
final decision. This may remind us that the final decision 
of some events need to consider the decisions in differ-
ent stages.

In this paper, three kinds of multi-source decision methods 
are proposed by considering the uncertainty of decision mak-
ing. The first method is the conditional entropy multi-source 
decision (CE-MSD) method, which fully takes into account 
the uncertainty of each condition attribute for decisions. The 
second method is the decision support degree multi-source 
decision (DS-MSD) method, which fully takes into account 
the uncertainty of condition attribute set for decisions. The 
third method is the most common mean fusion namely mean 
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multi-source decision (M-MSD) method, which is mainly 
used as a reference standard to measure the effectiveness of 
the CE-MSD and DS-MSD methods. There are three moti-
vations for studying this topic: (1) multiple-source informa-
tion systems can provide more information, which is more 
accurate. Therefore, the research of multiple-source deci-
sion systems (MSDS) which have the same universe and 
attributes and different information functions is meaningful. 
(2) Multivariate fusion is a necessary method for multiple-
source information systems. Therefore, the CE-MDS and 
M-MDS methods are proposed in this paper. (3) Multi-
source decision-theoretic can be effectively applied in wider 
areas, such as, medical diagnosis, academic evaluation and 
risk investment et al. So, the research of multiple-source 
decision systems (MSDS) and decision-theoretic rough set 
model which are very meaningful.

The rest of this paper is organized as follows. Section 2 
provides a review of basic concepts of decision systems, 
rough sets theory, decision-theoretic rough sets. In Sect. 3, 
firstly, the definition of the multi-source decision system 
(MSDS) is proposed. Then multi-source decision methods 
based on conditional entropy, decision support degree and 
mean method are proposed successively, which are the CE-
MSD, the DS-MSD and the M-MSD method (a reference 
standard). Meanwhile, three corresponding algorithms are 
designed to verify the effectiveness and feasibility of the 
proposed methods. At the same time, the approximation 
accuracy of the universe U about a decision partition �D 
is proposed under different methods. In Sect. 4, compari-
son of approximation accuracies of the CE-MSD, DS-MSD 
and M-MSD methods are made in different data sets to ver-
ify effectiveness of the CE-MSD and DS-MSD methods. 
Finally, Sect. 5 gets the conclusion.

2 � Basic knowledge

In this section, some basic concepts about decision systems, 
rough set theory, decision-theoretic rough set theory are 
reviewed.

A decision system is a quadruple S = (U,A,V , f ),where 
U is a nonempty finite universe; A = C ∪ D is the union 
of condition attribute set C and decision attribute set D, 
and C ∩ D = �; V is the union of attribute domains, i.e., 
V = ∪a∈AVa; f ∶ U × A → V is an information function, i.e., 
∀a ∈ A, x ∈ U, that f (x, a) ∈ Va,where f(x, a) is the value of 
the object x under the attribute a. Generally, let D = {d}. 
Unless otherwise specified, all the decision systems in this 
paper are defined as above shown.

A new form of conditional entropy proposed by Dai [2] 
is a reasonable measure for the uncertainty of decision sys-
tems. Let S = (U,C ∪ D,V , f ) be a decision system, where 
the universe U = {x1, x2,… , xn}, and U∕D = {Y1, Y2,… , Ym} 

is a partition of U. Then conditional entropy of D with 
respect to B (B ⊆ C) is defined by

where p([xi]B) = |[xi]B|∕|U|, p(Yj|[xi]B) = |[xi]B ∩ Yj|∕|[xi]B| 
and [xi]B = {xj|∀a ∈ B, f (xj, a) = f (xi, a)}.

The approximation accuracy proposed by Pawlak [22] 
is used to measure a rough classification. The approxima-
tion accuracy offers the percentage of possible correct deci-
sions when we classify objects by an attribute set R. Let 
U∕D = {Y1, Y2,… , Ym} be a partition of the universe U. For 
an arbitrary attribute subset R of C, the R-lower and R-upper 
approximations of U / D are defined as

The approximation accuracy and the approximation rough-
ness of U / D by R are defined as follows:

Here, if �R(U∕D) = 1, then the decision system is consist-
ent; otherwise it is inconsistent(nondeterministic and non 
definite). Especially, this article is carried out under the 
uncoordinated decision systems.

Given a decision system S = (U,C ∪ D,V , f ), Yao pro-
vides a way about how to make decisions under minimum 
Bayesian expectation risk in decision-theoretic rough set 
model [28]. Based on the idea of three-way decisions, the 
decision-theoretic rough set uses a state set Ω and an action 
set A to describe the decision-making process. Ω = {X,XC} 
indicating that an object is in a decision class X and not 
in X. The set of actions with respect to a state is given 
by A = {aP, aB, aN}, where aP, aB and aN represent three 
actions about deciding x ∈ POS(X), deciding x ∈ BND(X)

, and deciding x ∈ NEG(X), respectively. Let �PP, �BP and 
�NP denote the costs caused by taking actions aP, aB and aN, 
respectively, when an object belongs to X; and �PN, �BN and 
�NN denote the costs incurred for taking the same actions 
when the object does not belong to X.

Given the cost function, the expected cost associated with 
taking the particular actions for the objects in [x]R can be 
expressed as:

H(D|B) = −

|U|∑

i=1

p([xi]B)

m∑

j=1

p(Yj|[xi]B)logp(Yj|[xi]B),

R(U∕D) =R(Y1) ∪ R(Y2) ∪⋯ ∪ R(Ym),

R(U∕D) =R(Y1) ∪ R(Y2) ∪⋯ ∪ R(Ym).

�R(U∕D) =

∑
Yi∈U∕D �R(Yi)�

∑
Yi∈U∕D �R(Yi)�

,

RoughnessR(U∕D) =1 − �R(U∕D).

R(aP|[x]R) = �PPP(X|[x]R) + �PNP(X
C|[x]R);

R(aB|[x]R) = �BPP(X|[x]R) + �BNP(X
C|[x]R);

R(aN|[x]R) = �NPP(X|[x]R) + �NNP(X
C|[x]R).



1944	 Int. J. Mach. Learn. & Cyber. (2018) 9:1941–1954

1 3

where [x]R = {y|f (x, a) = f (y, a),∀a ∈ C}, and P(X|[x]) =
|X ∩ [x]

R
|∕|[x]

R
| represents condition probability of x with 

respect to X and P(XC|[x]R) = 1 − P(X|[x]R).
By the Bayesian decision procedure, the following mini-

mum-risk decision rules can be obtained: 

(P) If R(aP|[x]R) ≤ R(aB|[x]R) and R(a
P
|[x]

R
) ≤ R(a

N
|

[x]
R
), then decide x ∈ POS(X);

(B) If R(a
B
|[x]

R
) ≤ R(a

P
|[x]

R
) and R(a

B
|[x]

R
) ≤ R(a

N
|[x]

R
),  

then decide x ∈ BND(X);
(N) If R(aN|[x]R) ≤ R(aP|[x]R) and R(a

N
|[x]

R
) ≤R(a

B
|[x]

R
),  

then decide x ∈ NEG(X).

Considering a reasonable hypothesis that the decision 
cost of POS(X) is smallest and the decision cost of POS(X) 
and BND(X) are strictly smaller than the cost of NEG(X) 
when x ∈ X, the reverse of the order of cost is used for 
x ∈ XC, namely, 𝜆PP ≤ 𝜆BP < 𝜆NP and 𝜆NN ≤ 𝜆BN < 𝜆PN . 
Then the Bayesian decision procedure leads to the follow-
ing minimum-risk decision rules:

(P) If P(X|[x]R) ≥ � and P(X|[x]R) ≥ �, then decide 
x ∈ POS(X);
(B) If P(X|[x]R) ≤ � and P(X|[x]R) ≥ �, then decide 
x ∈ BND(X);
(N) If P(X|[x]R) ≥ � and P(X|[x]R) ≤ �, then decide 
x ∈ NEG(X).

Where the parameters �, � and � are defined as:

If a cost function further satisfies the condition: 
(𝜆NP − 𝜆BP)(𝜆PN − 𝜆BN) > (𝜆BP − 𝜆PP)(𝜆BN − 𝜆NN, then we 
can get 0 ≤ 𝛽 < 𝛾 < 𝛼 ≤ 1. Then the DTRS model has deci-
sion rules as follows:

(P) If p(X|[x]R) ≥ �, then decide x ∈ POS(X);
(B) If 𝛽 < p(X|[x]R) < 𝛼, then decide x ∈ BND(X);
(N) If p(X|[x]R) ≤ �, then decide x ∈ NEG(X).
On the one hand, we can get probabilistic approximations 

through the three decision rules, namely the upper and lower 
approximations of the DTRS model:

� =
�PN − �BN

(�PN − �BN) + (�BP − �PP)
;

� =
�BN − �NN

(�BN − �NN) + (�NP − �BP)
;

� =
�PN − �NN

(�PN − �NN) + (�NP − �PP)
.

R
(�,�)

(X) = {x ∈ U|P(X|[x]R) ≥ �}.

R
(�,�)

(X) = {x ∈ U|P(X|[x]R) ≥ �}.

If R
(�,�)

(X) = R(�,�)(X), then X is a definable set, oth-
erwise X is a rough set. Here, POS(�,�)(X) = R

(�,�)
(X), 

NEG(�,�)(X) =∼ R(�,�)(X), BND(�,�)(X) = R(�,�)(X) − R
(�,�)

(X) 
are the positive region, negative region and boundary region, 
respectively.

By using the thresholds � and �, one can divide the uni-
verse U into three regions of a decision partition �D based 
on (�, �):

POS(�,�)(�D|�C) = {x ∈ U|p(Dmax([x]C)) ≥ �},
BND(𝛼,𝛽)(𝜋D|𝜋C) = {x ∈ U|𝛽 < p(Dmax([x]C)) < 𝛼},
NEG(�,�)(�D|�C) = {x ∈ U|p(Dmax([x]C)) ≤ �},
where Dmax([x]C) = argmaxYj∈�D{|[x]C ∩ Yj|∕|[x]C|}.

Therefore, the upper and lower approximations of the 
universe U about a decision partition �D based on (�, �) are 
as follows:

R(�,�)(�D|�C) = {x ∈ U|p(Dmax([x]C)) ≥ �},
R
(𝛼,𝛽)

(𝜋D|𝜋C) = {x ∈ U|p(Dmax([x]C)) > 𝛽}.
And the approximation accuracy of the universe U about 

a decision partition �D can be defined as follows:

On the other hand, in view of the classification level of tol-
erance of decision-theoretic rough set model, all decision 
rules may bring corresponding loss due to its error rate [4, 7, 
29]. So let U∕D = {Y1,Y2,… ,Ym} , P = P(Dmax([x]R)|[x]R) 
where

and �PP = �NN = 0. Decision loss of all rules can be get as 
follows:

positive rule loss: (1 − P)�PN;
boundary rule loss: P�BP + (1 − P)�BN;
negative rule loss: P�NP;
For a given decision system S, the decision cost of S is 

calculated as:
COST = COST

POS
+ COST

BND
+ COST

NEG
=
∑

P
i
≥�

(1 − Pi)𝜆PN +
∑

𝛽<Pj<𝛼
Pj𝜆BP + (1 − Pj)𝜆BN +

∑
Pk≤𝛽

Pk𝜆NP

where pi = p(Dmax([xi]A)|[xi]A).

3 � Multiple‑source decision‑theoretic rough set 
theory

The more accurate and comprehensive the information is, 
the easier the decision making is. How to make the final 
decision according to the information from multiple sources, 
there is not uniform standard. In this paper, we propose two 
views to make decisions. The first view is to integrate infor-
mation and then make decisions. The second view is to make 

�R(U∕D) =
|R

(�,�)
(�D|�C)|

|R(�,�)(�D|�C)|
.

Dmax([x]R) = argmaxYj∈U∕D|[x]R ∩ Yj|∕|Yj|
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decisions on each source, and finally make the final decision. 
Then three kinds of multiple-source decision methods are 
proposed in the following, namely the conditional entropy 
multi-source decision (CE-MSD) method, the decision sup-
port degree multi-source decision (DS-MSD) method and 
the mean multi-source decision (M-MSD) method. The CE-
MSD and M-MSD methods are based on the first view. The 
DS-MSD method is based on the second view.

The rapid development of information science and tech-
nology has given rise to an unprecedented volume of freely 
available, user-generated data. In particular, these data about 
the same thing are usually obtained from different informa-
tion sources. In particular, making full use of the informa-
tion from various sources is an important issue in making 
right decisions process. Multi-source information fusion is 
a momentous content in the field of information research. 
The integration of information from different sources can 
get more comprehensive information to make the right deci-
sions. In this paper, we explore decision-theoretic rough sets 
under the multi-sources decision systems (MSDS) which 
have the same universe and attributes and different informa-
tion functions. First of all, the definition of multi-sources 
decision systems is proposed.

Definition 3.1  A multi-sources decision system (MSDS) is 
a tuple (U, {Si}i∈N), where Si = (U,C ∪ D,Vi, fi) is a decision 
system, N = {1, 2, 3,…} is an initial segment of the positive 
integers set, which represents information sources. ∀i ∈ N, 
Si represents the ith source of the multiple-source decision 
system (MSDS).

A brief description of notations in this section is made. 
Let MS = (U, {Si}i∈N) be a multiple-source decision system 
(MSDS), ∀i ∈ N, Si = (U,C ∪ D,Vi, fi) is a decision system, 
where U∕D = {Y1, Y2,… , Ym} for each source Si are identi-
cal, and N = {1, 2,…} denote the number of information 
sources.

How to make full use of the information from different 
sources to make right decisions focuses on information 
fusion. The more accurate the information collected is, the 
smaller the uncertainty of decisions is. In order to get more 
comprehensive and accurate information to make right deci-
sions, the reliability of each information source is considered 
by decision cost.

Definition 3.2  Let MS = (U, {Si}i∈N) be a multiple-source 
decision system (MSDS). The reliability of the information 
source Si (∀i ∈ N) in the MSDS can be defined as:

r(Si) = 1 − COSTSi

/
∑

i∈N

COSTSi

where COSTSi denotes the decision cost of ith information 
source, the value of COSTSi can be calculated by the equation

Ri is the indiscernibility relation generated by 
C in the ith information source of MSDS, and 
PRi

= max{P(Y1|[x]Ri
),P(Y2|[x]Ri

),… ,P(Ym|[x]Ri
)}. 

�PN , �BP, �BN , �NP are determined by the cost function given 
by experts, detailed information is shown in Table 1.

In Table 1, let �PP, �BP and �NP denote the cost incurred 
for taking actions aP, aB and aN, respectively, when an 
object belongs to a decision class Y. And �PN, �BN and �NN 
denote the cost caused by taking the same actions when 
the object does not belong to Y. Correspondingly, there are 
𝜆PP ≤ 𝜆BP < 𝜆NP, 𝜆NN ≤ 𝜆BN < 𝜆PN.

It is important to point out that the reliability of each 
information source can be measured by different criteria 
which are decided by decision goal. Decision cost is being 
used as the criteria in this paper.

Based on the consideration of the uncertainty of decision 
making, two kinds of multi-source decision methods are dis-
cussed in this paper, which are conditional entropy decision 
fusion and support degree decision fusion.

3.1 � The conditional entropy multi‑source decision 
method

By taking into account the uncertainty of each condition 
attribute for decisions, the reliable source of each condition 
attribute is selected by a certain standard. The new form 
of conditional entropy proposed by Dai [2] is a reasonable 
uncertainty measure for a complete or incomplete decision 
system. The conditional entropy is more sensitive, particu-
larly when the incomplete rate is at a high level. For one 
attribute (or attribute set), if the information of this attribute 
(or attribute set) gets coarser (there are more missing values 
on this attribute or attribute set), the conditional entropy of 
this attribute (or the attribute set) gets larger. As the divi-
sion becomes finer, the value of the conditional entropy is 
smaller. The smaller the value of the conditional entropy 

COST
S
i

=
∑

P
Ri
≥𝛼

(1 − P
R
i

)𝜆
PN

+
∑

𝛽<P
Ri
<𝛼

P
R
i

𝜆
BP

+ (1 − P
R
i

)𝜆
BN

+
∑

P
Ri
≤𝛽

P
R
i

𝜆
NP
,

Table 1   The cost function
Y (P) YC (N)

aP �PP �PN

aB �BP �BN

aN �NP �NN
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is, the more important the attribute will be. Thus the con-
ditional entropy can be used to evaluate the importance of 
attributes. Namely the uncertainty of a decision system can 
be measured by conditional entropy. Therefore, the condi-
tional entropy is used as the selection criterion for infor-
mation sources. In this section, under the multi-sources 
decision systems (MSDS), the CE-MSD method is a gen-
eralization of the DTRS-Model. We turn MSDS into a new 
restructuring decision table by using conditional entropy. 
And we made the right decision with DTRS-Model in the 
new decision table.

Definition 3.3  Let MS = (U, {Si}i∈N) be a multiple-source 
decision system (MSDS). The reliability of the informa-
tion source Si (∀i ∈ N) with respect to the attribute a in the 
MSDS can be defined as:

where r(Si) is the reliability of the information source 
Si (∀i ∈ N) in the MSDS, and Hi(D|a) is the conditional 
entropy of D with respect to a in the ith decision system of 
MS. And Hi(D|a) can be calculated by the equation

where pi([xi]a) = |[xi]a|∕|U| and p
i
(Y

j
|[x

i
]
a
) = |[x

i
]
a
∩ Y|∕

|[x
i
]
a
|.

After we select the most reliable source selection of each 
condition attribute, the MSDS can be turned into a new deci-
sion system S0. According to the given cost function, the 
expected costs associated with taking different actions for 
objects in [x]Ri

 can be expressed as
R(aP|[x]Ri

) = �PPp0(Y|[x]Ri
) + �PNp0(Y|[x]Ri

),
R(aB|[x]Ri

) = �BPp0(Y|[x]Ri
) + �BNp0(Y|[x]Ri

),
R(aN|[x]Ri

) = �NPp0(Y|[x]Ri
) + �NNp0(Y|[x]Ri

).
According to the Bayesian decision procedure, there are

(P)  I f  R(aP|[x]Ri
) ≤ R(aB|[x]Ri

) and R(a
P
|[x]

R
i

) ≤

R(a
N
|[x]

R
i

), then decide x ∈ POS(Y);
(B) If  R(aB|[x]Ri

) ≤ R(aP|[x]Ri
) and R(a

B
|[x]

R
i

) ≤

R(a
N
|[x]

R
i

), then decide x ∈ BND(Y);
(N) If  R(aN|[x]Ri

) ≤ R(aP|[x]Ri
) and R(a

N
|[x]

R
i

) ≤

R(a
B
|[x]

R
i

), then decide x ∈ NEG(Y).

In general, there are 𝜆PP ≤ 𝜆BP < 𝜆NP, and �
NN

≤ �
BN

< 𝜆
PN

. The decision rules can be restated as

(P) If p0(Y|[x]Ri
) ≥ � and p0(Y|[x]Ri

) ≥ �, then decide 
x ∈ POS(Y);

r(Si|a) = r(Si)∕Hi(D|a)

Hi(D|a) = −

|U|∑

i=1

pi([xi]a)

m∑

j=1

pi(Yj|[xi]a)log(pi(Yj|[xi]a))

(B) If p0(Y|[x]Ri
) ≤ � and p0(Y|[x]Ri

) ≥ �, then decide 
x ∈ BND(Y);
(N) If p0(Y|[x]Ri

) ≤ � and p0(Y|[x]Ri
) ≤ �, then decide 

x ∈ NEG(Y).

where the thresholds values �, � and � are given by:

Moreover, when (𝜆
NP

− 𝜆
BP
)(𝜆

PN
− 𝜆

BN
) > (𝜆

BP
− 𝜆

PP
)

(�
BN

− �
NN

) , there are 0 ≤ 𝛽 < 𝛾 < 𝛼 ≤ 1. In this case, 
above decision rules can be stated as

(P) If p0(Y|[x]Ri
) ≥ �, then decide x ∈ POS(Y);

(B) If 𝛽 < p0(Y|[x]Ri
) < 𝛼, then decide x ∈ BND(Y);

(N) If p0(Y|[x]Ri
) ≤ �, then decide x ∈ NEG(Y).

In this paper, the cost function satisfies the following 
conditions:

(1)	 𝜆PP ≤ 𝜆BP < 𝜆NP, and 𝜆NN ≤ 𝜆BN < 𝜆PN;
(2)	 (𝜆NP − 𝜆BP)(𝜆PN − 𝜆BN) > (𝜆BP − 𝜆PP)(𝜆BN − 𝜆NN).

Therefore, the three regions of the universe about a decision 
partition �D based on (�, �) are stated as

POS(�,�)(�D|�R
i

) = {x ∈ U|max{p0(Y1|[x]R
i

), p0(Y2,

|[x]
R
i

)},… , p0(Ym|[x]R
i

)} ≥ �},

BND(𝛼,𝛽)(𝜋D|𝜋R
i

) = {x ∈ U|𝛽 < max{p0(Y1|[x]R
i

), p0(Y2
|[x]

R
i

)},… , p0(Ym|[x]R
i

)} < 𝛼},

NEG(�,�)(�D|�R
i

) = {x ∈ U|max{p0(Y1|[x]R
i

), p0(Y2
|[x]

R
i

)},… , p0(Ym|[x]R
i

)} ≤ �},

Moreover, the upper and lower approximations of the uni-
verse U about a decision partition �D based on (�, �) in the 
MSDS are as follows:

R(�,�)(�D) = {x ∈ U|max{p0(Y1|[x]R
i

), p0(Y2|[x]R
i

)},… ,

p0(Ym|[x]R
i

)} > 𝛽},
R
(�,�)

(�
D
) = {x ∈ U|max{p0(Y1|[x]R

i

), p0(Y2|[x]R
i

)},… ,

p0(Ym|[x]R
i

)} ≥ �}.

And the approximation accuracy of the universe U about 
a decision partition �D is as follows:

Example 3.1  There are four decision sources about medical 
diagnosis, which constructs a multi-source decision system. 

� =
�PN − �BN

(�PN − �BN) + (�BP − �PP)
;

� =
�BN − �NN

(�BN − �NN) + (�NP − �BP)
;

� =
�PN − �NN

(�PN − �NN) + (�NP − �PP)
.

�R(�D) =
|R

(�,�)
(�D)|

|R(�,�)(�D)|
.
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Specific data information is shown in Table 2. And the cost 
function is shown in Table 3.

First of all, the decision cost of each information source 
can be obtained, namely

COSTS1 = 12, COSTS2 = 12, COSTS3 = 32, COSTS4 = 24. 
By the Definition 3.2, the reliability of the information 
source Si (i ∈ {1, 2, 3, 4}) in the MSDS can be obtained

r(S1) = 0.8500, r(S2) = 0.8500, r(S3) = 0.6000, r(S4) =
0.7000. Moreover, the conditional entropy of D with respect 
to ai (i ∈ {1, 2, 3, 4}) in each decision system can be calcu-
lated as follows

H1(D|a1) = 3.6000, H1(D|a2) = 6.1084, H1(D|a3) =
5.6541, H1(D|a4) = 4.0274,

H2(D|a1) = 3.6538,  H21(D|a2) = 5.6541,  H2(D|a3) =
4.8548, H2(D|a4) = 6.1048;
H3(D|a1) = 4.4265,  H3(D|a2) = 5.6541,  H3(D|a3) =
5.6541, H3(D|a4) = 6.1048;
H4(D|a1) = 3.7059,  H4(D|a2) = 5.2000 ,  H4(D|a3) =
5.2000, H4(D|a4) = 4.6039.

The reliability of the information source Si 
(i ∈ {1, 2, 3, 4}) with respect to the attribute a in the MSDS 
can be obtained, namely

r(S1|a1) = 0.2361, r(S1|a2) = 0.1392, r(S1|a3) = 0.1503, 
r(S1|a4) = 0.2111;

r(S2|a1) = 0.2326, r(S2|a2) = 0.1503, r(S2|a3) = 0.1751, 
r(S2|a4) = 0.1392;

r(S3|a1) = 0.1355, r(S3|a2) = 0.1061, r(S3|a3) = 0.1061, 
r(S3|a4) = 0.0982;

r(S4|a1) = 0.1889, r(S4|a2) = 0.1346, r(S4|a3) = 0.1346, 
r(S4|a4) = 0.1520.

Therefore, the most reliability source of the attribute a1 
is S1, the most reliability source of the attribute a2 is S2, 
the most reliability source of the attribute a3 is S2, and the 
most reliability source of the attribute a4 is S1. So the new 
decision table can be obtained, specific data information is 
shown in Table 4.

By the information of Table 4, there are U∕D = {D1,D2},  
where D1 = {x1, x2, x4, x6, x8}, D2 = {x3, x5, x7, x9, x10}, and

p0(D1|x1) = 2∕3, p0(D2|x1) = 1∕3; p0(D1|x2) = 2∕3, p0
(D2|x2) = 1∕3;
p0(D1|x3) = 0, p0(D2|x3) = 1; p0(D1|x4) = 1, p0(D2|x4)
= 0;
p0(D1|x5) = 0, p0(D2|x5) = 1; p0(D1|x6) = 1, p0(D2|x6)
= 0;
p0(D1|x7) = 2∕3, p0(D2|x7) = 1∕3; p0(D1|x8) = 1∕2, p0
(D2|x8) = 1∕2;
p0(D1|x9) = 0,  p0(D2|x9) = 1;  p0(D1|x10) = 1∕2,  p0

(D2|x10) = 1∕2.

Table 2   A multi-source 
decision system

1st source 2nd source 3rd source 4th source

a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4 d

x1 1 2 2 1 1 2 2 1 1 2 1 1 1 2 2 1 1
x2 1 2 1 1 1 2 2 1 1 2 1 1 1 2 1 1 1
x3 1 1 2 1 1 1 2 1 1 1 1 1 1 1 2 1 0
x4 0 1 1 1 1 1 1 1 0 1 2 1 0 1 2 0 1
x5 2 1 1 2 0 1 1 1 1 1 1 1 2 2 1 1 0
x6 0 1 1 0 0 1 2 0 0 1 1 0 1 1 2 0 1
x7 1 1 2 1 2 2 2 1 1 2 1 1 1 2 1 1 0
x8 1 1 1 0 2 1 1 0 1 1 1 0 1 1 1 0 1
x9 2 1 1 0 2 1 1 1 2 1 2 1 2 1 2 1 0
x10 1 1 1 0 1 1 1 1 0 1 2 1 0 1 2 0 0

Table 3   The cost function
Y (P) YC (N)

aP 0 36
aB 8 4
aN 24 0

Table 4   The new system after 
entropy fusion

U a1 a2 a3 a4 d

x1 1 2 2 1 1
x2 1 2 2 1 1
x3 1 1 2 1 0
x4 0 1 1 1 1
x5 2 1 1 2 0
x6 0 1 2 0 1
x7 1 2 2 1 0
x8 1 1 1 0 1
x9 2 1 1 0 0
x10 1 1 1 0 0
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Therefore, the three regions of the universe about a deci-
sion partition �D based on (�, �) are stated as

POS(�,�)(�D|�R0
) = {x1, x2, x7, x8, x10}, BND(�,�)(�D|�R0

) =

{x3, x4, x5, x6, x9}, NEG(�,�)(�D|�R0
) = �.

In order to verify the feasibility and effectiveness of 
the conditional entropy multi-source decision method, 
we design Algorithm 1 and analyze the time complexity 
of Algorithm 1. In steps 2–17, we compute all decision 
cost of information sources, and the time complexity is 
O(s × |U| × m). Step 18, calculate the reliability of all infor-
mation sources about all attributes, and the time complexity 
is O(s). Steps 19–27, calculate the reliability of all informa-
tion sources about single attribute, and the time complex-
ity is (s × |C| × |U|). Steps 28–30, we choose reliability 
information source of each condition attribute, and a new 
table can be obtained by the selected reliability information 
source, and the time reliability is O(|C| × |U|). Steps 31–39, 
calculate the upper and lower approximations of the decision 
partition �D about the new table, and the time complexity 
is O(|U|).

Algorithm 1: The conditional entropy multi-source decision method
Input : PN BP BN NP,MS (U S i i 1 2 s ),U D Y1 Y2 Ym

Output : The approximation accuracy of U D
1 begin
2 for i 1 : s do /* the s is the number of information sources */
3 COSTS i 0; /* initialize the decision cost of information source S i as 0 */
4 for xi U do /* xi is an object of the ith information source */
5 pi 0;
6 for j 1 : m do
7 pi max(pi [xi]Ri Y j [xi]Ri ); /* Ri is the equivalent relation of S i */
8 end
9 if pi then /* pi is the judgement condition of positive region */
10 COSTS i COSTS i (1 pi) PN ;
11 else if pi then /* pi is the judgement condition of boundary region */
12 COSTS i COSTS i Pi BP (1 Pi) BN ;
13 else /* pi is the judgement condition of negative region */
14 COSTS i COSTS i Pi NP;
15 end
16 end
17 end
18 r(S i) 1 (COSTS i

s
i 1COSTS i ); /* r(S i) is the reliability of S i */

19 for i 1 : s do
20 for a C do
21 Hi(D a) 0; /* Hi(D a) is the conditional entropy of D about a in S i */
22 for xi U do
23 Hi(D a) Hi(D a) ( [xi]a U ) m

j 1 pi(Yj [xi]a)log(pi(Yj [xi]a));
24 end
25 r(S i a) r(S i) Hi(D a); /* r(S i a) is the reliability of S i about a in the MS */

26 end
27 end
28 for a C do
29 k argmax

i 1 2 s
(r(S i a)); S 0(a) S k(a); /* S k(a) is all the value of a in the S k */

30 end
31 for x U do
32 R0( )( D) , R0( )

( D) ;

33 if P0 then
34 R0( )( D) R0( )( D) x ; /* P0 is the maximum conditional probability of decision

classes and equivalent class[x]R0 */

35 end
36 if P0 then
37 R0( )

( D) R0( )
( D) x ;

38 end
39 end

return : R( D)
R0( )

( D)

R0( )( D)
;

/* R( D) is the approximation accuracy of U D in the MS */

40 end

3.2 � The decision support degree multi‑source decision 
method

In many circumstances, the information from different 
sources may have different decisions on the same thing. 
What we need to do is integrate these decisions directly. By 
taking into account the uncertainty of condition attribute 

set for decisions, the support degree multi-source decision 
method (DS-MSD) is proposed to make the final decision 
by the support degree of information sources to the same 
decision. Firstly, the definition of decision support degree 
is proposed.

Definition 3.4  Let MS = (U, {Si}i∈N) be a multiple-source 
decision system (MSDS). The decision support degree of an 
object x be belonging to the positive, negative and bound-
ary region of a decision partition �D in the MSDS can be 
defined as:

d(POS(�,�)(�D))(x) = |Si ∶ x ∈ POS(�,�)(�D|�Ri
)|∕|N|,

d(BND(�,�)(�D))
(x) = |Si ∶ x ∈ BND(�,�)(�D|�Ri

)|∕|N|,

d(NEG(�,�)(�D))
(x) = |Si ∶ x ∈ NEG(�,�)(�D|�Ri

)|∕|N|.

In the above formula, | ∙ | denotes the cardinality of a set, 
and POS(�,�)(�D|�Ri

), BND(�,�)(�D|�Ri
), and NEG(�,�)(�D|�Ri

) 
can be calculated by

POS(�,�)(�D|�R
i

) = {x ∈ U|max{p
i
(Y1|[x]R

i

), p
i
(Y2|

[x]
R
i

)},… , p
i
(Y

m
|[x]

R
i

)} ≥ �},

BND(𝛼,𝛽)(𝜋D|𝜋R
i

) = {x ∈ U|𝛽 < max{p
i
(Y1|[x]R

i

), p
i
(Y2|

[x]
R
i

)},… , p
i
(Y

m
|[x]

R
i

)} < 𝛼},

NEG(�,�)(�D|�R
i

) = {x ∈ U|max{p
i
(Y1|[x]R

i

), p
i
(Y2|

[x]
R
i

)},… , p
i
(Y

m
|[x]

R
i

)} ≤ �}.

It is obvious that 0 ≤ d(POS(�,�)(�D))(x) ≤ 1, 0 ≤ d(BND(�,�)(�D))

(x)) ≤ 1 and 0 ≤ d(NEG(�,�)(�D))
(x) ≤ 1. Besides, there are 

d(POS(�,�)(�D))(x) + d(BND(�,�)(�D))
(x) + d(NEG(�,�)(�D))

(x) = 1.

Considering different risk attitudes of decision makers, 
we propose general multi-source decision model. So a deci-
sion level � (� ∈ (0.5, 1])is given to make the final decision.

Definition 3.5  Let MS = (U, {Si}i∈N) be a multiple-source 
decision system (MSDS). The upper and lower approxima-
tions of a decision partition �D in the MSDS can be defined 
as:

where � is the decision level.

It is easy to prove that the lower approximation is con-
tained in the upper approximation. Accordingly, the positive, 
negative and boundary region of a decision partition �D are 
defined as follows:

POS(�,�)(�D) = R
(�,�)

(�D),  NEG(�,�)(�D) =∼ R(�,�)(�D), 
BND(�,�)(�D) = R(�,�)(�D) − R

(�,�)
(�D).

And the approximation accuracy of the universe U about 
a decision partition �D is as follows:

R(𝛼,𝛽)(𝜋D) ={x ∈ U|d(NEG(𝛼,𝛽)(𝜋D)
(x) < 𝜆},

R
(𝛼,𝛽)

(𝜋D) ={x ∈ U|d(POS(𝛼,𝛽)(𝜋D)(x) ≥ 𝜆},
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By the definition of support degree and upper and lower 
approximations, the following conclusions hold trivially.

Proposition 3.1  Let MS = (U, {Si}i∈N) be a multiple-
source decision system (MSDS), � ∈ (0.5, 1]. The upper 
and lower approximations of a decision partition �D can be 
expressed as:

w h e r e  R
i(�,�)(�D|�Ri

) = {x ∈ U|max{p
i
(Y1|[x]R

i

), p
i
(Y2

|[x]
R
i

)},… , p
i
(Y

m
|[x]

R
i

)} > 𝛽}  a n d  R
i
(�,�)

(�
D
|�

R
i

) =

{x ∈ U|max{p
i
(Y1|[x]Ri ), pi(Y2|[x]Ri )},… , p

i
(Y

m
|[x]

Ri
)} ≥ �} 

denote the upper and lower approximations of a decision 
partition �D in the ith information source of MSDS.

By observing the Proposition 3.1, a new perspective 
of multi-source fusion can de obtained. Generalized mul-
tigranulation idea can be introduced into the multi-source 
information fusion. That is to say, a multiple-source deci-
sion system can be regarded as a knowledge base, and each 
information source can be seen as a knowledge granularity. 
Therefore, the second method of multi-source decisions has 
certain theoretical basis.

Proposition 3.2  Let MS = (U, {Si}i∈N) be a Multiple-
source decision system (MSDS), U∕D = {Y1,Y2,… ,Ym}, 
�1, �2 ∈ (0.5, 1] and 𝜆1 < 𝜆2. It is true that

where ��
R
(U∕D) =

|R
(�,�)

(�D)|

|R(�,�)(�D)|
.

Proof  When 𝜆1 < 𝜆2, it is true that R
𝜆1

(𝛼,𝛽)
(𝜋D) ⊆ R

𝜆2

(𝛼,𝛽)
(𝜋D) 

a n d  R
𝜆1

(𝛼,𝛽)
(𝜋D) ⊇ R

𝜆2

(𝛼,𝛽)
(𝜋D) .  T h e  c o n c l u s i o n 

𝛼
𝜆1
R
(U∕D) > 𝛼

𝜆2
R
(U∕D) holds trivially

By observing the Proposition 3.2, we can know that 
classification approximation accuracy of the second kind 
of multi-source decision methods varies with the value of 
�. The decision level � can be set according to the actual 
need. With the increase of the decision level �, classification 
approximation accuracy will decrease.

In order to verify the feasibility and effectiveness of the 
decision support degree multi-source decision method, we 
design Algorithm 2 and analyze the complexity of Algo-
rithm 2. In steps 2–13, we compute the positive and negative 

�R(�D) =
|R

(�,�)
(�D)|

|R(�,�)(�D)|
.

R(𝛼,𝛽)(𝜋D) ={x ∈ U ∶ |Si ∶ x ∈ Ri(𝛼,𝛽)(𝜋D|𝜋Ri
)|∕|N| > 1 − 𝜆},

R
(𝛼,𝛽)

(𝜋D) ={x ∈ U ∶ |Si ∶ x ∈ Ri
(𝛼,𝛽)

(𝜋D|𝜋Ri
)|∕|N| ≥ 𝜆},

𝛼
𝜆1
R
(U∕D) > 𝛼

𝜆2
R
(U∕D)

regions of the decision partition �D in information sources, 
and the time complexity is O(s × |U|). The steps 14 and 15, 
initialize the upper and lower approximations of �D in the 
MS, and the time complexity is O(1). Steps 16–25, calculate 
the upper and lower approximations of the decision partition 
�D and the time complexity is O(|U|).

Algorithm 2: The decision support degree multi-source decision method
Input : ,MS (U S i i 1 2 s ),U D Y1 Y2 Ym
Output : The approximation accuracy of U D

1 begin
2 for i 1 : s do
3 POS ( )( D Ri) ;
4 NEG( )( D Ri ) ; /* POS ( )( D Ri ) and NEG( )( D Ri) are the positive and

negative regions of the decision partition D in information source S i */
5 for x U do
6 pi(x) max p(Y1 [x]Ri ) p(Y2 [x]Ri) p(Ym [x]Ri ) ; /* Pi(x) is the maximum conditional

probability of decision classes and equivalent class[x]Ri */
7 if pi(x) then
8 POS ( )( D Ri) POS ( )( D Ri ) x ;
9 else if pi(x) then
10 NEG( )( D Ri ) NEG( )( D Ri ) x ;
11 end
12 end
13 end
14 R( )( D) ; /* R( )( D) is the upper approximation of D in the MS */
15 R( )( D) ; /* R( )( D) is the lower approximation of D in the MS */

16 for x U do
17 d(POS ( )( D)(x) S i x POS ( )( D Ri ) s;
18 d(NEG( )( D)(x) S i x NEG( )( D Ri) s; /* d(POS ( )( D)(x) and d(NEG( )( D)(x) are the

decision support degree of the positive and negative regions */
19 if d(NEG( )( D)(x) then
20 R( )( D) R( )( D) x ; /* is the decision level */
21 end
22 if d(POS ( )( D)(x) then
23 R( )( D) R( )( D) x ;

24 end
25 end

return : R( D))
R( )( D)

R( )( D)
;

/* R( D)) is the approximation accuracy of U D in the MS */

26 end

3.3 � The mean multi‑source decision method

Because the noise is generally obey the normal distribution, 
so mean value fusion is one of the most common methods 
of information fusion. It takes attribute value of each object 
as the basic point, and finally takes the average value of the 
basic point as the result of the fusion. Then the decision of 
MSDS is made on the new restructuring decision system. In 
this paper, M-MSD is introduced as a reference standard to 
measure the effectiveness of CE-MSD and DS-MSD.

Definition 3.6  Let MS = (U, {Si}i∈N) be a multiple-source 
decision system (MSDS). The value of an object x under the 
attribute a in the MSDS can be defined as:

f (x, a) =
∑

i∈N fi(x, a)∕�N�,
where fi(x, a) denotes the value of the object x under the 

attribute a in the ith information source Si of MS.
After the mean fusion, a new table S0 can be obtained. 

Let R0 be the equivalent relation generated by the condition 
attribute set of S0.
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Let MS = (U, {Si}i∈N) be a multiple-source decision 
system (MSDS). The upper and lower approximations of 
a decision partition �D based on (�, �)in the MSDS can be 
defined as:

And the approximation accuracy of the universe U about a 
decision partition �D is as follows:

In order to verify the feasibility and effectiveness of the 
CE-MSD and DS-MSD methods, the method of M-MSD is 
introduced as a reference standard. We design Algorithm 3 
(Algorithm of M-MSD) and analyze the time complexity of 
Algorithm 3. In steps 2–10, we compute mean value of each 
object about each attribute under all information sources, 
and the time complexity is O(|U| × |C| × s). Steps 11–22, 
calculate the upper and lower approximations of the decision 
partition �D, and the time complexity is O(m × |U|).

Algorithm 3: The mean multi-source decision method
Input : ,MS (U S i i 1 2 s ),U D Y1 Y2 Ym
Output : The approximation accuracy of U D

1 begin
2 for x U do
3 for a C do
4 temp 0;
5 for i 1 : s do
6 temp temp S i(x a); /* S i(x a) is the value of x under a in the S i */
7 end
8 S 0(x a) temp

s 0 5 ; /* indicates rounding down */

9 end
10 end
11 for j 1 : m do
12 R( )( D) , R( )( D) ; /* R( )( D) and R( )( D) are the upper and lower

approximations of D in the MSDS */
13 for x U do
14 p0(x) max p(Y1 [x]R0 ) p(Y2 [x]R0 ) p(Ym [x]R0 ) ; /* R0 is the equivalent relation

of the table S 0 obtained by mean fusion */
15 if p0(x) then
16 R( )( D) R( )( D) x ;
17 end
18 if p0(x) then
19 R( )( D) R( )( D) x ;

20 end
21 end
22 end

return : R( D)
R( )( D)

R( )( D)
;

/* R( D) is the approximation accuracy of U D in the MSDS */

23 end

4 � Comparison and analysis

In this paper, three kinds of multi-source decision methods 
are proposed, namely the conditional entropy multi-source 
decision (CE-MSD) method, the decision support degree 
multi-source decision (DS-MSD) method ,and the mean 
multi-source decision (M-MSD) method. The CE-MSD take 
every condition attribute as a basic point. Then the reliable 

R(𝛼,𝛽)(𝜋D) ={x ∈ U|max{p(Y1|[x]R0
), p(Y2|[x]R0

)},… , p(Ym|[x]R0
)} > 𝛽},

R
(𝛼,𝛽)

(𝜋D) ={x ∈ U|max{p(Y1|[x]R0
), p(Y2|[x]R0

)},… , p(Ym|[x]R0
)} ≥ 𝛼}.

�R(�D) =
|R

(�,�)
(�D)|

|R(�,�)(�D)|
.

source of each condition attribute is selected by conditional 
entropy. Finally, we make decisions on the new restructur-
ing decision system can obtained after fusion. The DS-MSD 
take every decision system as a basic point. Based on the 

decision degree and the decision level, the decision is made 
in the multi-source decision system (MSDS). Besides, mean 
value fusion is one of the most common methods of infor-
mation fusion. The M-MSD takes attribute value of each 
object as the basic point, and then takes the average value of 
the basic point as the result of the fusion. It is necessary to 
point out that the M-MSD method is introduced as reference 
standards to measure the effectiveness of CE-MSD and DS-
MSD in the multi-source decision system (MSDS).

In order to evaluate the effectiveness of CE-MSD and 
DS-MSD, a series of experiments are conducted to show 
their classify advantage compared with mean multi-source 
decision method in a multi-source decision system. It is well 
known that directly download multi-source data sets is very 
difficult from the network. Therefore, this paper obtains 
multi-source data sets by adding Gauss noise and random 
noise to each original data set. We download four original 
data sets from the machine learning data repository, Uni-
versity of California at Irvine (http://archive.ics.uci.edu/ml/
dat-asets.html). Detailed information is shown in Table 5. 
These experiments are implemented through using Visual 
C++ 6.0 and performed on a personal computer with an 
Intel Core i3-370, 2.40 GHz CPU, 2.0 GB of memory, and 
32-bit Windows 7.

Firstly, the method of obtaining multi-source data sets is 
introduced, which is to add Gauss noise and random noise to 
the original data set. Let MS = (U, {Si}i∈{1,2,…,s}) be a multi-
ple-source decision system (MSDS) constructed by the orig-
inal decision table S′. First of all, s numbers (g1, g2,… , gs) 
are generated and these numbers all obey the N(0, �) dis-
tribution, where � is the standard deviation. The method of 
adding Gauss noise to the original data is as follows:

where f �(x, a) represents the value of object x under attribute 
a in the original system s′, fi(x, a) represents the value of 
object x under attribute a in the ith (i ∈ N) decision system 
ofMS.

The method of adding random numbers to the original 
data is similar, and the specific process is as follows:

fi(x, a) =

{
f �(x, a) + gi, if (0 ≤ f �(x, a) + gi ≤ 1);

f �(x, a), else.

fj(x, a) =

{
f �(x, a) + ej, if (0 ≤ f �(x, a) + ej ≤ 1);

f �(x, a), else.

http://archive.ics.uci.edu/ml/dat-asets.html
http://archive.ics.uci.edu/ml/dat-asets.html
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where f �(x, a) represents the value of object x under attribute 
a in the original system s′, fj(x, a) represents the value of 
object x under attribute a in the jth ( j ∈ N)decision system 
of MS, and (e1, e2,… , es) are random numbers which are 
all between −e and e, where e is a random error threshold.

Secondly, Gauss noise is added to 40% objects which is 
randomly selected from the original system s′ and random 
noise is added 20% objects that is randomly selected from 
the rest of the original system s′. Finally, a multi-source deci-
sion system MS = (U, {Si}i∈{1,2,…,s}) can be obtained.

According to Proposition 3.2, the approximation accuracy 
of DS-MSD dose not increase with the increase of the value 
of �. In order to verify the fact, an illustrative experiment 
is conducted under multi-source data sets “Balance-Scale”, 
“Wine quality-red”, “Wine quality-white” and “Page-
blocks”. Accuracy results of DS-MSD are shown in Table 6.

Then in order to verify the validity of the CE-MSD 
method and DS-MSD methods in classification approxima-
tion accuracy, other fusion method M-MSD is introduced 
to compare. Then in order to test the effectiveness of the 
CE-MSD method and DS-MSD methods proposed by us, 
approximation accuracies of the three methods are compared 
in different data sets, which are shown in Table 7. Consider-
ing the fact that the approximation accuracy of DS-MSD is 
the highest when � = 0.6 by Proposition 3.2. Need to point 
out that the approximation accuracy of DS-MSD is calcu-
lated under the condition � = 0.6 in the Table 7. According 
to the user’s different requirements, the decision level � can 
take different values.

Table 5   Experiment data sets No. Data set name Abbreviation Objects Attributes Decision 
classes

Elements of MS

1 Balance Scale BS 625 4 3 25,000
2 Wine Quality − red WQ-r 1599 12 6 191,880
3 Wine Quality − white WQ-w 4898 12 7 587,760
4 Page − blocks P-b 5473 11 5 602,030

Table 6   The approximation accuracies of DS-MSD about different �

� 0.6 0.7 0.8 0.9 1.0

Balance-Scale 0.450 0.435 0.323 0.208 0.059
Wine quality-red 0.344 0.344 0.342 0.317 0.276
Wine quality-white 0.428 0.426 0.416 0.390 0.345
Page-blocks 0.849 0.835 0.794 0.647 0.535

Table 7   Approximation 
accuracies of DS-MSD, 
CE-MSD, M-MSD under 
different data sets

No. Balance-Scale Wine quality-red Wine quality-white Page-blocks

DS CE M DS CE M DS CE M DS CE M

1 0.435 0.468 0.350 0.352 0.299 0.066 0.444 0.405 0.127 0.845 0.897 0.785
2 0.457 0.423 0.416 0.345 0.296 0.083 0.426 0.401 0.140 0.845 0.836 0.779
3 0.467 0.454 0.364 0.343 0.290 0.073 0.457 0.424 0.152 0.814 0.881 0.762
4 0.474 0.416 0.333 0.354 0.302 0.095 0.477 0.432 0.154 0.851 0.836 0.827
5 0.461 0.455 0.356 0.342 0.307 0.097 0.467 0.423 0.165 0.826 0.854 0.818
6 0.476 0.480 0.384 0.365 0.316 0.115 0.470 0.429 0.174 0.831 0.866 0.821
7 0.487 0.470 0.329 0.336 0.293 0.112 0.491 0.443 0.178 0.848 0.835 0.827
8 0.501 0.445 0.337 0.353 0.316 0.099 0.480 0.418 0.180 0.863 0.850 0.817
9 0.524 0.477 0.371 0.370 0.346 0.110 0.498 0.438 0.169 0.870 0.850 0.771
10 0.516 0.438 0.390 0.370 0.332 0.102 0.509 0.447 0.187 0.879 0.857 0.812
11 0.491 0.444 0.376 0.346 0.319 0.104 0.508 0.449 0.186 0.885 0.865 0.818
12 0.526 0.463 0.349 0.336 0.304 0.094 0.500 0.447 0.190 0.887 0.873 0.812
13 0.533 0.505 0.380 0.349 0.325 0.121 0.514 0.465 0.193 0.889 0.875 0.779
14 0.561 0.518 0.359 0.383 0.348 0.127 0.515 0.461 0.201 0.887 0.871 0.811
15 0.530 0.482 0.388 0.345 0.320 0.122 0.516 0.467 0.205 0.890 0.873 0.771
16 0.552 0.504 0.351 0.365 0.346 0.133 0.521 0.462 0.204 0.887 0.881 0.775
17 0.541 0.475 0.376 0.345 0.317 0.136 0.524 0.463 0.218 0.890 0.879 0.784
18 0.558 0.499 0.396 0.374 0.356 0.145 0.518 0.468 0.220 0.889 0.877 0.767
19 0.533 0.518 0.330 0.346 0.329 0.156 0.538 0.492 0.223 0.889 0.880 0.772
20 0.547 0.531 0.361 0.372 0.350 0.150 0.514 0.469 0.236 0.889 0.880 0.767



1952	 Int. J. Mach. Learn. & Cyber. (2018) 9:1941–1954

1 3

The advantage of CE-MSD and DS-MSD methods in 
classification is visually shown through Fig. 1. For exam-
ple, either the approximation accuracy of CE-MSD or the 
approximation accuracy of DS-MSD are higher than the 
accuracy of M-MSD under data sets “Wine Quality-red” 
and “Wine Quality-white”. Either the approximation accu-
racy of CE-MSD or the approximation accuracy of DS-MSD 
is not lower than the accuracy of M-MSD under data sets 
“Balance Scale” and “Wine Quality-white”. Moreover, the 
accuracy of DS-MSD is not lower than the accuracy of CE-
MSD in most cases. A more intuitive comparison of the 
three methods is given in Table 8. Among them, “≻” means 
better. For example, the first number in Table 8, 95% indi-
cates that 95% of approximation accuracy of DS-MSD is bet-
ter than of CE-MSD in Balance-Scale’s data. As you can see 
in Fig. 1 and Table 8, the DS-MSD method and the CE-MSD 
method are superior to the M-MSD method. So, in general, 

we choose the DS-MSD method or the CE-MSD method. If 
we get unreliable sources, then we can choose the CE-MSD 
method. If we want to avoid loss of source information, we 
can choose the DS-MSD method.

5 � Conclusions

With the development of information technology, taking full 
use of the information from multiple sources is the key to 
solve the practical problems. Through information fusion, 
more comprehensive information can be obtained to make 
decisions. In this paper, three kinds of multi-source decisions 
are proposed, namely the conditional entropy multi-source 
decision method (CE-MSD), the decision support degree 
multi-source decision method (DS-MSD) and the mean 
multi-source decision method (M-MSD). Related concepts 
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Fig. 1   Approximation accuracies of DS-MSD, CE-MSD, M-MSD under different data sets

Table 8   Comparison of the 
three methods

DS ≻ CE (%) DS ≻ M (%) CE ≻ DS (%) CE ≻ M (%) M ≻ DS (%) M ≻ CE 
(%)

Balance-Scale 95 100 5 100 0 0
Wine quality-red 100 100 0 100 0 0
Wine quality-white 100 100 0 100 0 0
Page-blocks 80 100 20 100 0 0
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of the three kinds of multi-source decision-theoretic rough 
sets are described. Especially, three corresponding algo-
rithms are designed to verify the effectiveness and feasibility 
of the proposed decision methods. Then the classify advan-
tage of two methods (DS-MSD and CE-MSD) are verified 
by comparing with the approximate accuracy of M-MSD 
in multi-source decision systems which are generated by 
adding Gauss noise and random noise to Data set down-
loaded from UCI. Multi-source decision-theoretic rough set 
theory is a desirable research direction for decision-theoretic 
rough set. This paper just provides a framework of decision-
theoretic rough sets in multi-source decision systems. More 
approaches to integration will be studied in the future.
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